On the Brauer group of affine diagonal quadrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Models for Reductive Group Actions on Affine Quadrics

RÉSUMÉ. — Nous étudions les actions des groupes réductifs sur les quadriques affines complexes dont le quotient est de dimension 1. Une telle action est dite linéarisable si elle est équivalente à la restriction d’une action linéaire orthogonale dans l’espace affine ambiant de la quadrique. Une action linéaire satisfait à certaines conditions topologiques. Nous recherchons si ces conditions son...

متن کامل

Polynomial Maps of Affine Quadrics

Since the article [3] on polynomial maps of spheres appeared about 25 years ago, there have been a number of papers on the theory of rational maps of real varieties (see the references in [2], for example) which have many interesting things to say about the representation of homotopy classes by algebraic maps. As far as I know, however, the problem of representing elements in the homotopy group...

متن کامل

Brauer groups of diagonal quartic surfaces

We describe explicit methods of exhibiting elements of the Brauer groups of diagonal quartic surfaces. Using these methods, we compute the algebraic Brauer–Manin obstruction in two contrasting examples. In the second example, the obstruction is found to be trivial but a computer search reveals no points of small height on the surface.

متن کامل

On the Invertibility of Motives of Affine Quadrics

We show that the reduced motive of a smooth affine quadric is invertible as an object of the triangulated category of motives DM(k,Z[1/e]) (where k is a perfect field of exponential characteristic e). We also establish a motivic version of the conjectures of Po Hu on products of certain affine Pfister quadrics. Both of these results are obtained by studying a novel conservative functor on (a su...

متن کامل

Brauer Algebras and the Brauer Group

An algebra is a vector space V over a field k together with a kbilinear product of vectors under which V is a ring. A certain class of algebras, called Brauer algebras algebras which split over a finite Galois extension appear in many subfields of abstract algebra, including K-theory and class field theory. Beginning with a definition of the the tensor product, we define and study Brauer algebr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2016

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2015.11.015